

APPENDIX F

SOME CURRENTLY AVAILABLE

SOFTWARE ESTIMATION PRODUCTS

PRODUCED BY THE SOFTWARE

SUBGROUP OF THE

SPACE SYSTEMS COST ANALYSIS GROUP

�
APPENDIX F

SOME CURRENTLY AVAILABLE SOFTWARE ESTIMATION PRODUCTS

	This section incorporates inputs from a variety of sources, primarily from model developers. No attempt has been made to substantiate the information at this point. Comments and updates are welcome, as are full descriptions of other models not discussed here.

Contents:

PRICE-S

REVIC

SASET

SEER-SEM

SLIM

SoftCost-R & SoftCost-Ada

Other Models

�
PRICE-S

	This model was developed originally by Martin Marietta Price Systems (initially RCA Price, then GE Price) as one of a family of models for hardware and software cost estimation. Developed in 1977 by F. Freiman and Dr. R. Park, it was the first commercially available detailed parametric software cost model to be extensively marketed and used. In 1987, the model was modified and re-validated for modern software development practices. The PRICE-S model is proprietary, it can be leased for yearly use on IBM or compatible PC, and operates within Microsoft windows. It is also available for use on a UNIX workstation. The model is applicable to all types of software projects, and considers all DoD-STD-2167A development phases.

Inputs

One of the primary inputs for the PRICE-S model is source lines of code (SLOC). This may be input by the user or computed using either object-oriented or function point sizing models. Both sizing models are included in the PRICE-S package. Other key inputs include:

	1.	Application: a measure of the type (or types) of software, described by one of seven categories (mathematical, string manipulation, data storage and retrieval, on-line, real-time, interactive, or operating system).

	2.	Productivity Factor: A calibratable parameter which relates the software program to the productivity, efficiency/inefficiencies, software development practices and management practices of the development organization.

	3.	Complexities: Three complexity parameters which relate the project to the expected completion time, based on organizational experience, personnel, development tools, hardware characteristics, and other complicating factors.

	4.	Platform: the operating environment, in terms of specification, structure and reliability requirements.

	5.	Utilization: Percentage of hardware memory or processing speed utilized by the software.

	6.	New Design/New Code: Percentage of new design and new code.

	7.	Integration (Internal): Effort to integrate various software components together to form an integrated and tested CSCI.

	8.	Integration (Extenal): Effort to integrate various software CSCI’s together to form an integrated and tested software system.

	9.	Schedule: Software project start and/or end dates.

	10.	Optional Input Parameters: Financial factors, escalation, risk simulation.

Processing

	The PRICE-S algorithms are published in the paper entitled "Central Equations of PRICE S" which is available from PRICE Systems. It states that PRICE-S computes a "weight" of software based on the product of instructions and application inputs. The productivity factor and complexity inputs are very sensitive parameters which affect effort and schedule calculations. Platform is known to be an exponential input; hence, it can be very sensitive. A new weighted design and code value are calculated by the model based on the type or category of instructions. Both new design and code affect schedule and cost calculations. Internal integration input parameters affect the CSCI cost and schedule for integrating and testing the CSCI. The external integration input parameter is used to calculate software to software integration cost and schedule.

Outputs

	PRICE-S computes an estimate in person effort (person hours or months). Effort can be converted to cost in dollars or other currency units using financial factors parameters. Software development schedules are calculated for nine DoD-STD-2167A phases: System Concept through Operational Test and Evaluation. Six elements of costs are calculated and reported for each schedule phase: Design Engineering, Programming, Data, Systems Engineering Project Management, Quality Assurance, and Configuration Management. The PRICE-S model also contains several optional outputs including over thirty graphs, Gantt charts, sensitivity matrices, resource expenditure profiles, schedule reports. In addition, Microsoft Project files, spreadsheet files, and risk analysis reports can be generated. The risk analysis report is a Cumulative Probability Distribution and is generated using either Monte Carlo or Latin Hypercube simulation.

Calibration

	The PRICE-S model can be run in ECIRP (PRICE backwards) mode to calibrate selected parameters. The most common calibration is that of the productivity factor, which, according to the PRICE-S manual, tends to remain constant for a given organization. It is also possible to calibrate platform, application, and selected internal factors.

Life Cycle Considerations

	The PRICE-S life cycle model, included in the PRICE-S package, is a detailed model which computes software support costs. The primary inputs include PRICE-S development inputs, support descriptors which include software support life, number of installations, expected growth, and support productivity factors. The model also has a modification mode which allows up to four modifications per software CSCI. The PRICE-S life cycle model calculates support effort and outputs the cost in three support phases: maintenance, enhancements, and growth. The model allocates effort or cost across six elements of costs for each support phase.

Risk Analysis

	The PRICE-S model contains a robust Monte Carlo simulation utility, which facilitates rigorous risk analysis. Uncertainty can be characterized using probability distributions to define input parameters. Normal, Beta, Triangular and Uniform distributions are among those available. Simulation results are consolidated and reported as a probabilistic estimate.

Contact

Lockheed-Martin PRICE Systems

700 East Gate Drive, Suite 200

Mt. Laurel, NJ 08054

(800) 437-7423	a.k.a (800) 43PRICE

REVIC

	The Revised Intermediate COCOMO (REVIC) model was developed by Ray Kile and the U.S. Air Force Cost Analysis Agency. It is a copyrighted program that runs under DOS on an IBM PC or compatible computer. The model predicts the development costs for software development from requirements analysis through completion of the software acceptance testing and maintenance costs for fifteen years. REVIC uses the intermediate COCOMO set of equations for calculating the effort (man-power in staff-months and staff-hours) and schedule (elapsed time in calendar months) to complete software development projects based on an estimate of the lines of code to be developed and a description of the development environment. The forms of the basic equations are:

(I) MM = AB(KDSI)P(Fi)

(2) TDEV = CD(MM)

	Equation (1) predicts the manpower in man-months (MM) based on the estimated lines of code to be developed (KDSI = Delivered Source Instructions in thousands) and the product of a group of environmental factors (Fi). The coefficients (A,C), exponents (B,D) and the factor (Fi) are determined by statistical analysis from a database of completed projects. These variables attempt to account for the variations in the total development environment (such as programmer's capabilities or experience with the hardware or software) that tend to increase or decrease the total effort and schedule. The results from equation (1) are input to equation (2) to determine the schedule (TDEV = Development Time) in months needed to complete the development.

	REVIC enhancement of the intermediate COCOMO includes:

The addition of a fourth mode - Ada. Intermediate COCOMO has three modes of software development: organic, semi-detached, and embedded. These modes describe the overall software development in terms of size, number of interfaces, and complexity. REVIC adds a fourth mode, Ada development, to the model. This mode describes programs developed using an object�oriented analysis methodology or use of the Ada language (with separately cornpilable specifications and body code parts). Each mode provides a different set of coefficients for the basic equations.

Addition of the first and last development phases. COCOMO provides a set of tables distributing the effort and schedule to the phases of development (system engineering, preliminary design, critical design, etc.) and activities (system analysis, coding, test plarming, etc.) as a percentage of the total. COCOMO covers four development phases (preliminary design, critical design, code and unit test, and integration and test) in the estimate. REVIC adds two more development phases: software requirements engineering, and integration & test after FQT.

	REVIC predicts the effort and schedule in the software requirements engineering phase by taking a percentage of the development phases. It provides a default value (12% for effort, 30% for schedule) for this percentage based on average programs, but allows the user to change the percentage.

	COCOMO development phase ends at completion of the integration & test phase (after successful FQT). This phase covers the integration of software CSC's into CSCI's and testing of the CSCI's against the test criteria developed during the program. It does not include the system�level integration (commonly called software builds) of CSCI's, and the system-level testing to ensure that system-level specification requirements are met. The software to software and software to hardware integration and testing is accounted for in the Development Test and Evaluation (DT&E) phase. REVIC predicts the effort and schedule for this phase by taking a percentage of the development effort. REVIC provides a default percentage of 22% for effort and 26% for schedule based on average programs. It allows the user to modify these percentages if desired.

Complete interface between the model and the user. Users are not required to have extensive knowledge about the model or detailed knowledge of algorithms. REVIC contains extensive prompting and help screens. REVIC also removes the typical intimidation factor that prevents analysts from successfully using models.

Provide the capability to interactively constrain the schedules and staffing levels. Schedules can be constrained either in the aggregate or by phase of the development effort. Staffing can be constrained by phase. Using these features, the analyst can estimate cost overruns, underruns, and schedule slips at any major milestone by entering the actuals-to-date at any milestone, and letting the program calculate the remaining effort and schedule.

Inputs:	Same as COCOMO inputs.

Processing

	While REVIC processing is mostly the same as Intermediate COCOMO, it provides a single weighted "average" distribution for effort and schedule, along with the ability to allow the user to vary the percentages in the system engineering and DT&E phases. On the other hand, COCOMO provides a table for distributing the effort and schedule over the development phases, depending on the size of the code being developed. REVIC has been enhanced by using statistical methods for determining the lines of code to be developed. Low, high, and most probable estimates for each CSC are used to calculate the effective lines of code and standard deviation. The effective lines of code and standard deviation are then used in the equations, rather than the linear sum of the estimates. This quantifies, and to some extent, reduces the existing uncertainties regarding software size. [see Boehm's Software Engineering Economics for a discussion of effective lines of code]. REVIC automatically performs sensitivity analysis showing the plus and minus three sigma values for effort, and the approximate resultant schedule.

Outputs

The user is presented with a menu allowing full exercise of the analytical features and displays of the program. All inputs are easily recalled and changed to facilitate analyses and the user can constrain the solution in a variety of ways.

Calibration and Accuracy

	REVIC's coefficients have been calibrated using recently completed DoD projects (development phase only) by using the techniques in Dr. Boehm's book. On the average, the values predicted by the effort and schedule equations in REVIC are higher than in COCOMO. A study validating REVIC equations using a database different from that used for initial calibration was published by the Air Force's HQ AFCMD/EPR. In terms of accuracy, the model compares favorably with expensive commercial models.

	The level of accuracy provided by the model is directly proportional to the user's confidence in the lines-of-code (LOC) estimates and a description of the development environment. When little is known about the project or environment, the model can be run leaving all environment parameters at their default (nominal) settings. The only required input is LOC. As the details of the project become known, the data file can be reloaded into the program, and the nominal values can be changed to reflect the new knowledge permitting continual improvement of the accuracy of the model.

Maintenance Estimate

	REVIC provides an estimate for software maintenance over a fifteen year period by using the Boehm's COCOMO equation:

	(3) MMam = MMnom * ACT P (MFi), where MMnom is the result of equation (1) without multiplying by the environmental factor (Fi); ACT is annual change traffic as a percentage, and Mfi is the environmental factors for maintenance.

	REVIC provides a default percentage of ACT and allows it to be changed. REVIC also assumes a transition period after delivery of the software, during which residual errors are found before reaching a steady state condition. This provides a declining, positive delta to the ACT during the first three years. Beginning the fourth year, REVIC assumes the maintenance activity consists of both error correction and new software enhancements.

Other Reference Materials

	There is context-sensitive help available on-line while running REVIC, and the information is enough to input data and obtain results in all cases. However, the developers recommend that Boehm's Software Engineering Economics be read to fully understand the implications of parametric modeling.

Contact

The Air Force Cost Analysis Agency has assumed responsibility for REVIC upkeep and distribution. For suggestions for upgrades or problem reporting, contact:

Air Force Analysis Agency

AFCSTC/IS (REVIC)

1111 Jefferson Davis Highway, Suite 403

Arlington, VA 22202

[information current as of 5/92]

(703) 604-0412

REVIC is available on the Air Force cost bulletin board at (800) 344-3602 or from Washington, D.C. at . (703) 604-0412. Connection should be 1200 or 2400 BAUD with 8 bits, no parity, and one stop bit. [information current as of 5/92]

REVIC and its user manual are also available on the Air Force Software Technology Support Center (STSC) bulletin board at autovon 458-7653 or (801) 777-7653. Connection at 2400 BAUD with 8 bits, no parity, and one stop bit. For access problems call Vern Phipps or Rick Dahl at (801) 777-7703. [information current as of 5/92]

�
SASET

	SASET is a sophisticated software cost estimating model built by Martin Marietta Astronautics during 1986-1990 under contract with the Naval Center for Cost Analysis under auspices of the Office of Naval research. Enhancements to the model were accomplished under contract with both the Navy and Air Force cost centers. The model combines database information from over 500 successfully completed software projects with "expert" factors to determine software development and maintenance costs, schedules, and sizing numbers used by engineers, estimators, and top-level management.

	Cost estimating relationships were created, project complexity factors were established, and independent variables were quantified. The result was database-derived software estimating equations for assembly and high-order language software. These equations and resulting software parametric models have been validated by comparing project sizing, labor actuals, and schedules with SASET outputs.

	During data collection, analysis, and model requirements generation activities, it was decided that the parametric model would include the entire software development life cycle from systems requirements through systems test, with an option to add maintenance, and provide budget and schedule outputs for the engineering development organizations. The database collection approach consists of decomposing software actuals by CSCI class, type and language.

Inputs

	SASET starts from an initial state of no information about the software project, and then proceeds to prompt the user in an orderly fashion for the information necessary to gain insight and emulation of project environment, complexities, and sizing for up to 50 CSCI's, to produce schedule and effort outputs.

Processing

	SASET is a database-derived expert system. The calibrated equations for effort budget and schedule are computed for the system environment, and software complexity, brought together for a common set and then multiplied against the equivalent new HOL SLOC.

Outputs

	The computerized model has the capability of sizing, costing, scheduling and integrating up to 50 multiple CSCI's simultaneously. The model determines a labor estimate expressed in staff months and spread over the phases and subphases of software development life cycle for each individual CSCI and the total project and helps to establish a logical development sequence. The model also identifies an optimal schedule and effort.

Calibration

	All input variables and calibration constants of SASET are open and capable of being changed. The calibration process requires a set of software development records as input. The required data from each record includes staff hours, source lines of code, schedule, and project complexity. Records are sorted by class (manned flight, avionics, ground, etc.) and type of software (system, application, support), then run through multiple regression analysis for productivity constants for each type of software.

Life Cycle Considerations

	SASET performs detailed environment effort allocation across subphases of the development life cycle. It will also spread calculated maintenance effort across time. The effort included is for engineering organizations only; any other efforts needing coverage need to be added manually.

Contact

Air Force Analysis Agency

AFCSTC/IS (REVIC)

1111 Jefferson Davis Highway, Suite 403

Arlington, VA 22202

[information current as of 5/92]

(703) 604-0412

�
SEER-SEM

	SEER-SEM is part of a family of software and hardware cost, schedule and risk estimation tools. SEER models run on IBM, Macintosh, and Sun/UNIX platforms with no special hardware requirements. SEER-SEM is used throughout the aerospace and defense industry on two continents. All issues found in today's software environments are addressed.

Inputs

	SEER-SEM accepts source lines of code (SLOC) or function points or both. When selecting function points, the user may use IFPUG standard function points or SEER function-based inputs which include internal functions. Users follow a Work Breakdown Structure (WBS) describing each CSCI, CSC, and CSU (module or element) to be estimated. Knowledge bases are used to provide fast and consistent inputs describing complexity, personnel capabilities and experience, development support environment, product development requirements, product reusability requirements, development environment complexity, target environment, schedule, staffing and probability. Users can modify all inputs to their specifications at any time.

	There are four sets of knowledge bases that automatically input environment factors. These knowledge bases cover a wide variety of scenarios and help users produce fast and reliable estimates. Knowledge bases are easily calibrated to user environments to give quick and accurate estimates for the entire life cycle. Users can also change and modify each input at any time. Knowledge bases include the following:

Platform describes the primary operating platform. Platform knowledge bases include avionics, business, ground-based, manned space, unmanned space, shipboard, and more.

Application describes the overall function of the software under estimation. Application knowledge bases include computer-aided design, command & control, database, MIS, office automation, radar, simulation, and more.

Development Method describes the development methods to be used during the development. These knowledge bases include Ada, spiral, prototyping, object oriented design, evolving, traditional waterfall, and more.

Development Standard describes the development documentation, quality, test standards and practices which will be followed during the development. These knowledge bases include commercial, ISO-9000, 2167A, 1703, 1679, 7935A and more.

Processing

	SEER-SEM uses proprietary algorithms which are found in the back of the User's Manual. Parameter (input) sensitivities and other insights into the model are also found in the user's documentation. Knowledge bases can be printed out by users. SEER-SEM utilizes a unique process that simulates a 10,000 iteration Monte Carlo for risk analysis.

Outputs

	SEER-SEM has almost 30 informative reports and charts covering all aspects of software costs, schedules and risk. The Quick Estimate Report is easily tailored to instantly give the user specific details for trade-off analyses and decision support information. A Detailed Staffing Profile follows SEI suggested staffing categories. Risk reports and graphs based on person months, costs, and schedule are standard features. SEER-SEM gives a minimum schedule output. However, schedules, personnel, and other factors can be changed to give effort and cost trade�offs.

Calibration

	Calibration of SEER-SEM involves the effort to customize input values to more closely reflect particular program development characteristics. SEER-SEM's Design To Technology and Design To Size functions provide the tools for calibration activities. The SEER knowledge bases are flexible and easy to create and modify, providing the user with a mechanism for building custom calibrated knowledge bases.

Life Cycle Considerations

	SEER-SEM estimates all elements of the life-cycle, beginning with the preliminary design phase and ending with software maintenance. SEER-SEM has many features which support Life Cycle Cost Analysis. Total life cycle cost is reported in the Basic Estimate Report, Activity Report, and the Labor Allocation Reports. The Set Reference feature allows for quick analysis of what happens to both development and maintenance costs with the change of any parameter.

Maintenance

	SEER-SEM baseline maintenance includes all adaptive, perfective and corrective maintenance. Additionally, you may add annual change rate and growth percents to anticipate any functional growth or enhancements over the software maintenance period. Enhancements and block upgrades can also be estimated.

Contact

Galorath Associates, Inc.,

SEER Technologies Division

P.O. Box 90579

Los Angeles, CA 90009 (3 1 0)670-3404.

�
SLIM

	SLIM for Windows 3.1 was developed by Quantitative Software Management, Inc. (QSM). All of the theory behind the model has been published by Prentice Hall in 1992 in the book, Measures for Excellence: Reliable Software, on Time, Within Budget by Lawrence H. Putnam and Ware Meyers. SLIM is based on QSM's Software Equation. This was derived from the Rayleigh-Norden model and has been validated over a 15 year time period with thousands of real, completed projects. The equation takes the conceptual form:

(1) Quantity of Function = Process Productivity * Effort * Schedule

	This means that the product of the time and effort coupled with the process productivity of the development organization determines how much function can be delivered. Extensive empirical study of software data has shown that very strong linearities exist in software behavior. This is taken into account by the calculational form of the software equation and discloses how these non-linearities can be exploited by management. The calculation form of the equation is expressed:

(2) Size = Process Productivity Parameter * (Effort/B)(1/3) * Time(4/3)

where,

	1.	The process Productivity Parameter is the development process proficiency of the organization. It is determined from historical data.

	2.	Size is the quantity of function created in source lines of code written, function points, objects, or other measures of function.

	3.	Effort is the development effort required. It includes all categories of labor used on the project. Effort is consistent with the time specified below.

	4.	B is a complexity adjustment factor. It provides for specialized skills for integration testing, documentation, and management as the size of the system increases.

	5.	Time is the elapsed calendar development time from the start of detailed design until the product is ready to enter into operational service (frequently this is a 95% reliability level).

	SLIM is applicable to all types and sizes of projects. It computes schedule, effort, cost, staffing for all software development phases and reliability for the main construction phase. Because the software equation effectively models design intensive processes and is not methodology dependent, SLIM works well with waterfall, spiral, incremental, and prototyping development methodologies. It works with all languages, and function points as well as other sizing metrics. It is specifically designed to address the concerns of senior management, such as:

	1.	What options are available if the schedule is accelerated by four months to meet a tight market window?

	2.	How many people must be added to get two months schedule compression and how much will it cost?

	3.	When will the defect rate be low enough so I can ship a reliable product and have satisfied customers?

	4.	If the requirements grow or substantially change, what will be the impact on schedule, cost, and reliability?

	5.	How can I quantify the value of my process improvement program?

Computing Platforms

	SLIM is available for use on IBM PC or compatible machines running Windows 3.1. SLIM is licensed on an annual basis with full support and free upgrades.

Inputs

	The primary input for SLIM is SLOC, function points, objects, CSCI, or any valid measure of function to be created. The model uses size ranges for input: minimum, most likely, and maximum. Other important inputs include:

	1.	Language: Multiple choices and mixes.

	2.	System Type: One of nine (business, scientific, command & control, real time, etc.).

	3.	Environmental Information: Tools, methods, practices, database usage; standards in place and adherence and usage of those standards.

	4.	Experience: Personnel skill and qualifications.

	5.	Process Productivity Parameter: a macroscopic factor determined by calibration from historical data. It is a reliable tuning factor that accurately reflects application complexity and the efficiency of the organization in building software. This is a secsitive parameter that is capable of measuring real productivity and process improvement. SLIM contains and expert system to determine the Process Productivity Parameter when the user has no historical data. This [non-linear] parameter is dealt with in terms of a linear scale ranging from 0 to 40.

	6.	Management Constraints: Maximum allowavle schedule, manimum cost, maximum and minimum staff size, required reliability at the time the software goes into service as well as the desired probabilities for each of these constraints.

	7.	Accounting: Labor rates, inflation rates, and other economic factors.

	8.	Flexibility: Extensive tailoring for milestones, phase definitions, and fraction of time and effort applied to each phase based on the organization’s own history.

Processing

	There are three primary modes of operation: building and using an historical database, performing estimating and analysis, and creating presentations and reports.

	For estimation, SLIM uses the software equation in conjunction with management constraints for schedule, cost, staffing and required reliability to determine an optimal solution with the highest probability of successful completion. Through Monte Carlo simulation techniques, the size range estimates are mapped through the software equation to provide estimates of the uncertainty in schedule, cost staffing and reliability. The solution obtained can be compared with the user's historical data and QSM's historical data to test its reasonableness. This discloses impossible or highly improbable solutions so that expensive mistakes are avoided.

Outputs

	The primary output of SLIM is the optimal solution, which provides development time, cost, effort and reliability expected at delivery. It also provides comprehensive sensitivity and risk profiles for all key input and output variables, and a consistency check with similar projects. SLIM's graphical interactive user interface makes it easy to explore quickly extensive tradeoff and "what if" scenarios including design to cost, schedule, effort and risk. It has 181 different output tables and graphs from which the user can choose. These outputs constitute a comprehensive set of development plans to measure and control the project while it is underway.

Calibration

	The process productivity parameter for SLIM can (and should) be obtained by calibration using historical data. All that is required are project size, development time and effort. These numbers are input into the software equation to solve for the process productivity. The historical data can also be used to compare with any current solution to compare for reasonableness.

Life Cycle Considerations

	The user can customize his life cycle in terms of phases, sub-phases, staffing profile shapes and milestones. Explicit shapes are provided after delivery to deal with maintenance, ongoing support and enhancement releases.

Contact

Quantitative Software Management, Inc.

1057 Waverly Way

McLean, VA 22102

(703) 790-0055

�
SOFTCOST-R & SOFTCOST-ADA

	The SoftCost-R model was developed by Dr. Don Reifer based on the work of Dr. Robert Tausworthe of the NASA Jet Propulsion Laboratory. SoftCost is now marketed by Resource Calculations, Inc. of Englewood, Colorado. It contains a database of over 1500 data processing, scientific and real-time programs. SoftCost-R is applicable to all types of prograrns and considers all phases of the software development cycle. The model is available for lease on IBM PC's. A separate model SoftCost-Ada is available to model Ada language and other object-oriented environments.

	SoftCost-Ada has been developed to match the new object-oriented and reuse paradigm which are emerging not only in Ada, but also C++ and other object-oriented techniques. It contains a database of over 150 completed projects, primarily Ada.

SoftCost-R Inputs

	A key input of SoftCost-R is size, which can either be directly input in SLOC or computed from function points. SoftCost-R uses a more sophisticated sizing model than COCOMO; besides reused code, sizes of modules added or deleted may be included. The other inputs are in four categories like COCOMO. Some SoftCost-R inputs are similar to COCOMO, but many of the more than thirty inputs are unique. Examples of unique inputs are use of peer reviews, customer experience, and degree of standardization. Each input except size requires a rating ranging from "very low" to "extra high", with "nominal" ratings having no effect on effort calculations. SoftCost-R also uses COCOMO inputs to compare the results of SoftCost-R with those of an updated version of COCOMO.

SoftCost-Ada Inputs

	In the main, the inputs are the same as SoftCost-R, with some changes to reflect the new paradigm. There is no COCOMO comparison.

Processing

	SoftCost-R is not a simple regression model. It uses powerful multivariable differential calculus to develop solutions relying on the T-W probability distribution. This provides the ability for the user to perform "what-if" analysis and look at what would happen to schedule if effort were constrained. Such a capability is not present in COCOMO. SoftCost-R is one of the few models for which the mathematical algorithms are completely described in the user's manual. The SoftCost-R equation is:

(1) PM = P0 * Al * A2 * (SLOC)B

where,

	1.	PM = number of person-months,

	2.	P0 is a constant factor that may be calibrated,

	3.	A 1 is the "Reifer cost factor" which is an exponential product of nine inputs,

	4.	A2 is a productivity factor computed from 22 inputs,

	5.	B is an exponent which may be calibrated.

	The user's manual illustrates values assigned to ratings for all model inputs to help the user understand the effect of each input on effort and schedule.

Outputs

	SoftCost-R computes an estimate in person-months of effort and schedule for each project, plus a productivity value. Other outputs include a side-by-side comparison with a recent version of COCOMO, several "what if" analysis options, a resource allocation summary for any of three development methods (traditional waterfall, incremental development, or Ada object-oriented), and schedule outputs for Gantt and PERT charts. SoftCost-Ada output formats are similar, and can interface with project planning tools in the same way.

Calibration

	The model contains a calibration file which contains values for multiple calibration constants and cost drivers. The user may change these values to better describe the user's unique environment, and store alternative calibration and WBS files for different jobs. SoftCost-Ada and SoftCost-R are similar.

Life Cycle Considerations

	SoftCost-R contains a separate life cycle model for support costs. In addition to SoftCost-R development inputs, life cycle inputs include annual change traffic, length of support period, a sustaining engineering factor, and economic factors. In addition to annual and total support costs, the life cycle model has optional reports for various staffing options, fixed levels of maintenance, and fixed work force levels. Both SoftCost versions are similar, and use the same staff limited approach to life cycle resource allocation.

Contact

Mr. A.J. (Tony) Collins

Resource Calculations, Inc.

7853 East Arapahoe Court, Suite 2500

Englewood, CO 80112-1361

Telephone: (303) 267-0379

Facsimile: (303) 220-5620

�
OTHER MODELS

CHECKPOINT

Software Productivity Research, Inc.

I New England Park

Burlington, MA 01803

(617) 273-0140

COSTAR

SoftStar Systems

28 Ponemah Road

Arnherst,NH 03031

(603) 672-0987

SOFTST(R

Softstar Systems

28 Ponemah Road

Arnherst,NH 03031

(603) 672-0987

Sells COSTAR, a COCOMO variant; supports Ada COCOMO and function points

IBM PC, VAX/VMS

Dan Ligett (personal letter - Jan 16, 1987) [info checked brochure 10/92]

SWAN

IIT Research Institute

201 Mill Street

Rome, NY 13440

(315)336-2359

Fax: (315) 339-7002

Personto Contact: Anthony H. Williarns (315)339-7105 [ok 12/13/93]

A COCOMO variant developed for US Arrny, PM Training Devices, 12350 Research

Parkway, Orlando, FL. 32826

Written in Ada; runs on IBM AT, MS-DOS 3.0 or higher

Includes Ada COCOMO & Function Point Analysis

Target Software

Dr. George Bozoki

552 Marine Parkway, #1202

Redwood City, CA 94065

(415)592-2560

SSM, the Software Sizing Model

Computer Economics

4560 Admiralty Way, Suite 109

Marina Del Rey, CA 90292

(213) 827-7300

Jensen Model ("System 4"), CEIS (CEI Sizer), training

[ref. 1987 IITRI Software Sizing model paper]

Mainstay Software Corporation

1099 18th Street, Suite 2920

Denver, COLO 80202

(303) 298-8961

Dan Walkovitz, President

Product: Mainstay - an analytical database system

[ok 8/92, Setzer]

Howard Rubin Associates, Inc.

1666 Massachusetts Avenue, Suite 7

Lexington, MA. 02173

(617)861-7171

Products:

FPXpert - an expert system for function point counting, analysis and management;

RA-METRICS - a measurement tool and metrics respository; primarily oriented toward information systems, promotes concept of "measurement dashboard"

COSTMODL

Developed at the Software Technology Branch at NASA/JSC to be used for Space Station Freedom Software Support Environment and will be available from COSMIC.

Parametric Cost Analysis Handbook

�PAGE �

�PAGE �241�

