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ELEMENTARY STATISTICAL TECHNIQUES AND CER DEVELOPMENT


	Proper CER development and application depends heavily upon understanding of certain mathematical and statistical techniques.  Some of the simpler and more widely used techniques are explained in this chapter.  Many other techniques are available in standard statistical text books.

CER AND MODEL DEVELOPMENT - UNCERTAINTY AND RISK REDUCTION

	CER development and cost modeling are forms of forecasting real world cost events.  How much effort will it take to build a bomber or a space sensor?  An estimate has a probability of being within a given percentage of the “correct” answer.  The better the project cost data and cost model, the closer will be the predicted cost to the final actual cost at project completion.  Since a model of the real world involves simplifications, the final actual cost will rarely equal the estimated cost.
	These modeling uncertainties translate into “risk”” of producing a realistic cost estimate within a given percentage of the final actual project cost.  Such uncertainties can be grouped into two major categories:
	1.	Uncertainty of any organization to perform as planned due to unexpected resource or schedulings in the scope of effort to produce the design, prototype or product, and,
	2.	Uncertainty associated with the development (and, hence, usefulness) of any cost model.  This item includes:
		a.	Uncertainty associated with omission of a key cost driver,
		b.	Mis-specification of the form of the model equation,
		c.	Modeling limitations associated with a lack of data, and,
		d.	Data consistency across multiple project databases.
	The first type of risk, (1) can be addressed through improved specifications in the scope of work and an improvement in the clarity of understanding between the customer and contractor.  This would result in a decrease in the amount of contract and engineering change proposals (CCE/ECPs) and unnecessary rework.
	One of the second types of risk, (2a), uncertainty associated with omission of key cost drivers, is addressed through development of historical cost data by product line, defined Work Breakdown Structure (WBS), and systematic understanding of the types of cost associated with development, prototype, and production programs.
	In risk (2b), the avoidance of the mis-specification of the form of the model equation, careful review of in-house and available industry data is required to create the basis of the model.  Affirmative answers are required to the following four questions.  Does the model make basis economic sense?  Is the cost estimate an extrapolation within the scope of the cost and database?  Is this type of cost estimate no higher a risk estimate than an interpolation between existing historical data in size and complexity?  How well do the outputs compare to history?  If poor patterns exist between the model and history, it is likely that an important parameter has been left out.  The form of the cost equation should then be re-examined.
	Risk (2c) deals with the question about the sufficiency of data points that are available to validate the cost model.  A lack of data points will increase the uncertainty of the cost model equation.  Can more data points be included?  The use of additional relevant data can increase the validity of any model.  In the absence of substantial data, have experts critique the reasonableness of the model outputs.
	Usually there is a lack of data in a relatively new technological or programmatic area of cost modeling.  How can we model the costs associated with an improvement in processes or teaming arrangements that improve producibility and lower costs relative to the old ways of program management and control?  Metric data is now being gathered within many companies, so this data issue should become much less severe in years to come.  In the meantime, organizational process improvement curves, a variation of the quantity of production (repetition) based on historical cost improvement curves, can be used to evaluate the benefits of process improvements.
	Risk (2d), data consistency, can be mitigated by using Work Breakdown Structure (WBS) cost elements which are standardized across projects.  (At the end of this Handbook, Appendix B contains a treatise about developing Work Breakdown Structures).  If definitions for system engineering, project management, etc., are not consistent, then the resulting cost model and its cost estimating capability for each of the WBS elements may be flawed.  Cost analysts need to have at their disposal a correct WBS cost estimating tool, complete with a WBS dictionary.  if a cost model is developed for similar hardware items (objects) across programs, then the definition of these items should be standardized as much as possible.  Differences in definitions from program to program or between product lines are captured by the complexity of labor, or material cost differences.

DEVELOPING COST ESTIMATING RELATIONS (CERs)

	For CERs to be valid, they must be developed based on sound statistical concepts.  Once valid CER’s have been developed, then parametric cost modeling can proceed.  The following discussion will review some of the more commonly used statistical techniques for CER development.
	CERs are the key tool used in estimating by the cost analyst.  CERs may be used at any time in the estimating process.  For example, CERs may be used in the concept or validation phase of estimating program costs because there is insufficient system definition to use anything else.  CERs may also be used in later phases of estimating program costs as a cross check of another estimating procedure, or as the primary basis for an estimate.
	The value of a CER is dependent upon the soundness of the database from which the CER is developed and the appropriateness of that CER to what is to be estimated.  Determination of the “goodness” of a CER and its applicability to the system being estimated requires a thorough analysis by the cost analyst.  The process of validating and selecting a CER is the subject of this chapter.  We will begin by defining CERs and then look at how a CER may be developed.  Next, we will look at when to use a CER and note the strengths and weaknesses of  CERs. Finally, we will consider the techniques for developing CERs; the linear regression model of the Least Squares Best Fit (LSBF) model, along with a few other statistical techniques.  Appendix D describes additional statistical techniques.
	We can make a few general observations about CER development.  We know that CERs are analytical equations which relate various categories of cost (either in dollars or physical units) to cost drivers or explanatory variables.  We also know that CERs can take numerous forms,ranging from informal rules of thumb or simple analogies to formal mathematical
�


functions derived from statistical analysis of empirical data.  If we are going to develop a CER, however, then we need to focus on assembling and refining the data that constitute the empirical basis for that CER.
	In deriving a CER, assembling the database is especially important and, generally, a very time-consuming activity (see Chapter II).  Deriving valid CERs is a difficult task and the number of really good, valid CERs is significantly fewer than one might expect.  While there are many reasons for the lack of valid CERs, the number one reason is the lack of an appropriate database.
	When developing a CER, the analyst must first hypothesize a logical estimating relationship.  For example, does it make sense to expect that costs will increase as aircraft engine thrusts increase?  Given that it does make sense that cost and engine thrust has some direct relationship, the analyst will need to refine that hypothesis to determine whether the relationship is linear or curvilinear.  After developing a hypothetical relationship, the analyst needs to assemble a database.
	Sometimes, when assembling a database, the analyst discovers that the raw data is at least partially in the wrong format for analytical purposes and displays irregularities and inconsistencies.  Adjustments to the raw data, therefore, almost always need to be made to ensure a reasonably consistent and comparable database.  It is important to note that no degree of sophistication in the use of advanced mathematical statistics can compensate for a seriously deficient database.
	Since the data problem is fundamental, typically a considerable amount of time is devoted to collecting data, adjusting that data to help ensure consistency and comparability, and providing for proper storage or information so that it can be rapidly retrieved when it is needed.  In fact, more effort is typically devoted to assembling a quality database than to anything else.  Given the appropriate information, however, the analytical task of deriving CER equations is often relatively easy.

Hypothesis Testing Of A Logical CER
	Complementing the issues of deriving a good database is the need to hypothesize what the CER should be.  Some analysts believe the hypothesis comes first, then the data search to build a good database.  Other analysts believe the data search comes first, and given the availability of data, the subsequent determination of a logical relationship or hypothesis occurs.  Regardless of the position taken, the analyst must determine a logical estimating relationship.  The analyst must structure the forecasting model and formulate the hypothesis to be tested.  The work may take several forms depending upon forecasting needs.  It involves discussions with engineers to identify potential cost driving variables, scrutiny of the technical and cost proposals, and identification of cost relationships.  Only with an understanding of hardware requirements can an analyst attempt to hypothesize a forecasting model necessary to develop a CER.

The CER Model
	Once the database is developed and a hypothesis determined, the analyst is ready to mathematically model the CER.  While this analysis can take several forms, both linear and curvilinear, we will initially consider one simple model -- the LSBF model.  A number of statistical PC packages are available to generate the LSBF equation, but we will manually develop the LSBF equation in the latter part of this chapter.  Once established, the database and the hypothesis testing complete the modeling activity and the equations are then relatively easy to derive.

WHEN TO USE A CER

	When a CER has been build from an assembled database based on a hypothesized logical statistical relationship, and within an accepted or revised hypothesis, one is ready to apply the CER.  It may be used to forecast future costs or it may be used as a cross check of an estimate done with another estimating technique.  For example, one may have generated an estimate using a grassroots approach -- a detailed build up by hours and rates -- then “benchmark” the grassroots estimate with a CER.
	A CER built for a specific forecast may be used with far more confidence than a generic CER.  One must be especially careful in using a generic CER when the characteristics of the forecast universe are, or are likely to be, different from those reflected in the CER.  One may need to qualify a generic CER by reviewing the database and the assumptions made for its use.  A need to update the database with data appropriate for forecasting may be necessary.  One may also find that the generic CER can be used only as a starting point.
	When using a generic CER as a point-of-departure, enhance or modify the forecast in light of any other available supplementary information.  This most likely will involve several iterations before the final forecast is determined.  It is important to carefully document the iterations so that an audit trail exists explaining how the generic CER evolved to become the final forecast.
	In using any CER -- specially built or generic -- the main theme is invariably:  Be careful; Use good judgment!  CERs are a fundamental estimating tool used by cost analysts.  However, we must us them while applying a good deal of judgment.  For example, we need to be concerned about the uncertainty of a future system in terms of chance elements in the “real” world; that is, uncertainty about the state of the world in terms of technological, strategic, and political factors.  Also, we must carefully document as we go, so that an all important audit trail is maintained.

STRENGTHS AND WEAKNESSES OF CERs

	In applying good judgment in the use of CERs, we need to remain mindful of the strengths and weaknesses of CERs.  Some of the more common ones are presented below:



Strengths
	1.	One of the principle strengths of CERs is that they are quick and easy to use.  Given a CER equation and the required input data, one can generally turn out an estimate quickly.
	2.	A CER can be used with limited system information.  Consequently, CERs are especially useful in the RDT&E phase of a program.
	3.	A CER is an excellent (statistically sound) predictor if derived from a sound database, and can be relied upon to produce quality estimates.

Weaknesses
	1.	CERs are sometimes too simplistic to forecast costs.  Generally, if one has detailed information, the detail may be reliably used for estimates.  If available, another estimating approach may be selected rather than a CER.
	2.	Problems with the database may mean that a particular CER should not be used.  While the analyst developing a CER should validate that CER, it is the responsibility of any user to validate the CER by reviewing the source documentation.  Read what the CER is supposed to estimate, what data were used to build that CER, how old the data are, how they were normalized, etc.  Never use a cost model without reviewing its source documentation.

	Now that we know what a CER is, how to develop a CER, when to use a CER, and some of a CER’s strengths and weaknesses, we can develop techniques for building CER’s.  The LSBF technique is only one mathematical transformation of the database - the linear regression model.  Other sophisticated curvilinear models can also be developed, but will not be explored in this Handbook.  An analyst should be mindful that little in the estimating world is linear.

REGRESSION ANALYSIS

	The purpose of regression analysis is to improve our ability to predict the next “real world” occurrence of our dependent variable.  Regression analysis may be defined as the mathematical nature of the association between two variables.  The association is determined in the form of a mathematical equation.  Such an equation provides the ability to predict one variable on the basis of the knowledge of the other variable.  The variable whose value is to be predicted is called the dependent variable.  The variable about which knowledge is available or can be obtained is called the independent variable.  In other words, the dependent variable is dependent upon he value of independent variables.
	The relationships between variables may be linear or curvilinear.  By linear, we mean that the functional relationship can be described graphically (on a common X-Y coordinate system) by a straight line and mathematically by the common form:
		y = a + bx
		where	y =	(represents) the calculated value of y - the dependent variable
			x =	the independent variable
			b =	the slope of the line, the change in y divided by the corresponding change in x
			a and b are constants for any value of x and y
	Looking at the bi-variate regression equation -- the linear relationship of two variables -- we find that regression analysis can be described by an equation.  The equation consists of two distinctive parts, the functional part and the random part.  The equation for a bi-variate regression population is:
	Y = A + BX + E
	where A + BX is the functional part (a straight line) and E is the random part.  A and B are parameters of the population that exactly describe the intercept and slope of the relationship.
	E represents the ran or “error” part of the equation.   The random part of the equation is always there because the errors of assigning values, the errors of measurement, and errors of observation.  These types of errors are always with us because of our human limitations, and the limitations associated with real world events.

	Since it is practically impossible to capture data for an entire population, we normally work with a sample from that population.  We denote that we are working with a sample by adjusting our equation to the form:
		y = a + bx + e,
where a + bx represents the functional part of the equation and e represents the random part.  Our estimate of A and B in the population are represented by a and b, respectively, in the sample equation.  In this sense then, a and b are statistics.  That is, they are estimates of population parameters.  As statistics, they are subject to sampling errors.  As such, a good random sampling plan is important.
	1.	The values of the dependent variable are distributed by a normal distribution function about the regression line.
	2.	The mean value of each distribution lies on the regression line.
	3.	The variance of each array of the independent variable is constant.
	4.	The error term in any observation is independent of the error term in all other observations.  When this assumption is violated, data is said autocorrelated.  This assumption fixes the error term to be a truly random variable.
	5.	There are no errors in the values of the independent variables.  The regression model specifies that the independent variable be a fixed number -- not a random variable.  For example, you wish to estimate the cost of a new bomber aircraft at mach 2, then mach 2 is the value of the independent variable.  Mach 2 is a fixed number.  The regression model will not handle errors in the independent variables.
	6.	All causation in the model is one way.  This simply means that if causation is built into the model, the causation must go from he independent variable to the dependent variable.  Causation, though neither statistical nor a mathematical requirements, is a highly desirable attribute when using the regression model for forecasting.  Causation, of course, is what we, as cost analysts, are expected to determine.  We do this in our hypothesis of a logical mathematical relationship in either building or reviewing a CER equation.


CURVE FITTING

	There are two standard methods of curve fitting.  One method has the analyst plot the data and fit a smooth curve to the data.  This is known as the graphical method.  The other method uses formulas or a “best-fit” approach where an appropriate theoretical curve is assumed and mathematical procedures are used to provide the one “best-fit” curve; this is known as the Least Squares Best Fit (LSBF) method.
	We are going to work the simplest model to handle, the straight line, which is expressed as:
	Y = a + bx

Graphical Method
	To apply the graphical method, the data must first be plotted on graph paper.  No attempt should be made to make the smooth curve actually pass through the data points which have been plotted; rather, the curve should pass between the data points leaving approximately an equal number of points on either side of the line.  For linear data, a clear ruler or other straightedge may be used to fit the curve.  The objective in fitting the curve is to “best-fit” the curve to the data points plotted; that is, each data point plotted is equally important and the curve you fit must consider each and every data point.
	Although considered a rather outdated technique today, plotting the data is still always a good idea.  By plotting the data, we get a picture of the relationship and can easily focus on those points which may require further investigation.  Hence, as a first step, we shold plot the data and note any data points which may require further investigations before developing a forecasting graphical curve or mathematical equation.

LSBF Method
	The LSBF method specifies the one line which best fits the data set we are working with.  The method does this by minimizing the sum of the squared deviations of the observed values of Y and calculated values of Y.  For example, if the distances:  (Y1 - YC1,), (Y2 - YC2), (Y3 - YC3), (Y4 - YC4), etc., parallel to the Y-axis, are measured from the observed data points to the curve, then the LSBF line is the one that minimizes the following equation (see Figure III-1):
	(Y1 - YC1)2 + (Y2 - YC2)2 + (Y3 - YC3)2 + ... + (Yn - YCn)2
�
�		y					( yc4
				       y3	(		( y4
					( yc3
		       y1	(	( yc2
			( yc1	( y2
�								x
			Figure III-1.  The LSBF Line.

	In other words, the sum of the deviations from the observed value of Y, and the calculated value of Y - Yc squared, is a minimum; i.e.,  (Y - YC)2  is a minimum.  This same distance,  (Y - YC)  is the error term or residual.  Therefore, the LSBF line is one that can be defined as:
	(E2 is a minimum because ( (Y - YC)2 = (E2
For a straight line,
	Y = a + bx
and, with N points, we have
	(X1, Y1,),  (X2,  Y2),  (X3,  Y3), ... (Yn , Yn)

	The sum of the squares of the distances is a minimum if,
		(Y     =  AN  +  B(X   and
		(XY  =  A(X + B(X2
	These two equations are called the normal equations of the LSBF line.  Reference to any comprehensive statistical textbook will illustrate that these two equations do meet the requirements of the properties of ordinary LSBF regression.  These properties are:
	1.	The technique considers all points.
	2.	The sum of the deviations between the line and observed points is zero, that is,
		((Y - Yc)2 = (E2 = a minimum.
	Similarities between these two properties and the arithmetic mean should also be observed.  The arithmetic mean is the use of the values of the independent variable divided by the number of observations or  (X/n = � EMBED Equation.2  ���  and the sum of the  “Ys”  divided by the number of observations or  (y/n = � EMBED Equation.2  ���.  Now, instead of considering the mean as a point when dealing with only one variable, we are now using a line -- the LSBF regression line.  Note that:
	The parameters, a and b, define a unique line with a Y-intercept of a and a slope of b.
	To calculate the values needed to solve for a and b, we need a spreadsheet (See Table III-1).  For example, use the values in Table III-2.

Table III-1.  Table Needed to Get Sums, Squares and Cross Products
X�Y�X*Y�X2�Y2��X1�Y1�X1 * Y1�X12�Y12��X2�Y2�X2 * Y2�X22�Y22��X3�Y3�X3 * Y3�X32�Y32��-�-�-�-�-��-�-�-�-�-��(Xn�(Yn�((Xn * Yn)�(Xn2�(Yn2��

Table III-2
X�Y�X Y�X2�Y2��4�10�40�16�100��11�24�264�121�576��3�8�24�9�64��9�12�108�81�144��7�9�63�49�81��2�3�6�4�9��36�66�505�280�974��
	We can substitute the table values into the equations for b and a:
		where  � EMBED Equation.2  ���	and,  � EMBED Equation.2  ���
	Solving for b, we get:
		� EMBED Equation.2  ���

		b  =  505 - 6(6)11
		        280 - 6(6)2

		b  =  109
		         64

		b  =  1.703125

	Solving for a yields:
		� EMBED Equation.2  ���
		� EMBED Equation.2  ���
		� EMBED Equation.2  ���
	Therefore, the regression equation (calculated y) is
		� EMBED Equation.2  ���

Multiple Regression
	In simple regression analysis, a single independent variable (X) is used to estimate the dependent variable (Y), and the relationship is assumed to be linear (a straight line).  This is the most common form of regression analysis used in contract pricing.  However, there are more complex versions of the regression equation that can be used to consider the effects of more than one independent variable on Y.  That is, multiple regression analysis assumes that the change in Y can be better explained by using more than one independent variable.  For example, automobile gasoline consumption may be largely explained by the number of miles driven.  However, it might be better explained if we also considered factors such as the weight of the automobile.  In this case, the value of Y would be explained by two independent variables.
		Yc	=  A + B1X1 + B2X2
	where: Yc	=  the calculated or estimated value for the dependent variable
		A	=  the Y intercept, the value of Y when X = 0
		X1	=  the first independent (explanatory) variable
		B1	=  the slope of the line related to the change in X1, the value by which change when X1 changes by one
		X2	=  the second independent variable
		B2	=  the slope of the line related to the change in X2, the value by which change when X2 changes by one
	Multiple regression will not be considered in depth in this Handbook.  Consult a statistics text to learn more about multiple regression.

Curvilinear Regression
	In some cases, the relationship between the independent variable(s) may not be linear.  Instead, a graph of the relationship on ordinary graph paper would depict a curve.  For example, improvement curve analysis uses a special form of curvilinear regression.  As with multiple regression, consult a statistics text to learn more about curvilinear regression.

“GOODNESS” OF FIT,  R AND R2

	Now that we have developed the LSBF regression equations, we need to determine how good the equation is.  That is, we would like to know how good a forecast we will get by using our equation.  In order to answer this question, we must consider a check for the “goodness” of fit, the coefficient of correlation (R)  and the related coefficient of determination (R2).  There are a number of other statistics we could check which would expand upon our knowledge of the regression equation and our assurance of its forecasting capability.  Some of these will be discussed late.

Correlation Analysis
	One indicator of the “goodness” of fit of a LSBF regression equation is correlation analysis.  Correlation analysis considers how closely the observed points fall to the LSBF regression equation we develop.  The assumption is that the more closely the observed values are to the regression equation, the better the fit;  hence, the more confidence we can expect to have in the forecasting capability of our equation.  It is important to note that correlation analysis refers only to the “goodness” of fit or how closely the observed values are to the regression equation.  Correlation analysis tells us nothing about cause and effect, however.

Coefficient Of Determination 
	The coefficient of determination (R2) represents the proportion of variation in the dependent variable that has been explained or accounted for by the regression line.  The value of the coefficient of determination may vary from zero to one.  A coefficient of determination of zero indicates that none of the variation in Y is explained by the regression equation; whereas a coefficient of determination of one indicates that 100 percent of the variation of Y has been explained by the regression equation.  Graphically, when the R2 is zero, the observed values appear as in Figure III-2 (bottom) and when the R2 is one, the observed values all fall right on the regression line as in Figure III-2 (top).
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FIGURE III-2

In order to calculate R2 we need to use the equation:
	� EMBED Equation.2  ���

	R2 tells us the proportion of total variation that is explained by the regression line. Thus R2 is a relative measure of the “goodness” of fit of the observed data points to the regression line. For example, if we calculate R2 using the formula above and find that R2 = 0.70, this means that 70% of the total variation in the observed values of Y is explained by the observed values of X. Similarly, if R2 = 0.50, then 50% of the variation in Y is explained by X. If the regression line perfectly fits all the observed data points, then all residuals will be zero, which means that R2 = 1.00.  In other words, a perfect straight-line fit will always yield R2 = 1.  As the level of fit becomes less accurate, less and less of the variation in Y is explained by Y’s relation with X, which means that R2 must decrease.  The lowest value of R2 is 0, which means that none of the variation in Y is explained by the observed values of X. Some applications require R2 of at least 0.7 or 0.8. An R2 < 0.25, which corresponds to an R < 0.5, would never be acceptable.

Coefficient Of Correlation
The coefficient of correlation (R) measures both the strength and direction of the relationship between X and Y. The meaning of the coefficient of correlation is not as explicit as that of the coefficient of determination.
We can determine whether R is positive or negative by noting the sign of the scope of the line, or b.  In other words, R takes the same sign as the slope; if b is positive, use the positive root of R2 and vice versa. For example, if R2 = 0.81; then R = + 0.9 and we determine whether R takes the positive root (+) or the negative root (-) by noting the sign of b. If b is negative, then we use the negative root of R2 to determine R. So to calculate R we need to know the sign of the slope of the line.
It is most important to note that R does not tell us how much of the variation in Y is explained by the regression line.  R is only valuable in telling us whether we have a direct or an inverse relationship and as a general indicator of the strength of the association.

THE LEARNING CURVE

	Basic form of the “learning curve” equation is,
		y = a*xb or, Log y = Log a + b Log x
where,
y = Cost of Unit #x (or average for x units)
a = Cost of first unit
b = Learning curve coefficient
Note that the equation  Log y = Log a + b Log x  is of precisely the same form as the linear equation  y = a + bx.  This means that the equation  Log y = Log a + b Log x  can be graphed as a straight line on log-log graph paper and all the regression formulae apply to this equation just as they do to the equation  y = a + bx.  In order to derive a learning curve from cost data (units or lots) the regression equations need to be used, whether or not the calculations are performed manually or using a statistical package for your personal computer. In this sense, the learning curve equation is a special case of the LSBF technique.
Since in learning curve methodologies cost is assumed to decrease by a fixed amount each time quantity doubles, then this constant is called the learning curve “slope” or percentage (i.e., 90%).  For example,
	For unit #1
		Y1 = A(1)b = A (First Unit Cost) and
	For unit #2
		Y2 = A(2)b = Second Unit Cost
So,
��Y2 = A*(2)b = 2b = a Constant, or  “Slope”
Y1          A

Slope = 2b, and, Log Slope = bLog2
�Therefore,  b = Log Slope
                            Log2

For a 90% “Slope,”
�b = Log .9 = -0.152
      Log 2
	If we assume that A = 1.0, then the relative cost between any units can be computed.
Y3 = (3)-0.152 = 0.8462
Y6 = (6)-0.152 = 0.7616

Note that:
�Y6 = .7616 = 0.9
�Y3      .8462

Any good statistical package (for instance StatView) can perform all the calculations (and many others) shown.  A quality package will let you customize your results (create presentations) save your work, and calculate all these statistics: frequency distributions, percentiles, t-tests, variance tests, Pearson correlation and covariance, regression, ANOVA, factor analysis and more.  Graphics and tables such as scattergrams, line charts, pie charts, bar charts, histograms, percentiles, factors, etc., should be available to the user. Statistical analysis is greatly simplified using these tools.

LIMITATIONS, ERRORS AND CAVEATS OF LSBF TECHNIQUES.

When working with the LSBF technique, there are a number of limitations, errors and caveats of which we need to be aware.  The following are some of the more obvious.

Extrapolation Beyond The Range Of The Observed Data
A LSBF equation is truly valid only over the same range as the one from which the sample data was initially taken. In forecasting into the future, we do not know the shape of the curve; what we do know is that there is more estimating risk involved.  We will give less credence to forecasts which exceed the range of the original data.  However, this does not mean that we should never extrapolate beyond the relevant range; it may well be that forecasting beyond the relevant range is the only suitable alternative we have.  What we must keep in mind is that extrapolation assigns values using a relationship that has been measured for circumstances which may differ from those for the forecast.  That is, we are assuming that the past will perfectly predict the future -- and that will not always be true.

Cause And Effect
Regression and correlation analysis can in no way determine cause and effect.  It is up to the analyst to do a logic check, determine an appropriate hypothesis and analyze the data base such that an assessment can be made regarding cause and effect.  For example, an R2 = .95 relates the number of public telephones in a city to liquor sales.  Clearly, there is no cause and effect involved here.  A deeper variable, population, is the truly independent variable that drives both the number of public telephones and liquor sales.  As analysts, we must ensure that we have chosen approximately related data sets and CERS, and that real cause and effect is at work.  Be careful not to find relationships when they do not exist.

Using Past Trends To Estimate Future Trends
Conditions can change: if the underlying population changes due to changes in technology, for example, then the LSBF equation would not be suitably used as a forecasting tool. In using a CER, we need to make sure the factors in the forecast still apply to the original historical LSBF equation.

Misinterpreting The Coefficients Of Correlation And Determination
	R will always be greater than R2. If R2 is 0.64, then R is 0.80. Don’t confuse the two.

Summary
In this chapter we have so far discussed the development and use of Cost Estimating Relationships (CERs).  We noted that in using or developing a CER, a high quality database is most critical (see Chapter II).  Specifically, we highlighted the difficulties of assembling a good database for CER development and indicated several reasons why there could be a problem.  We next considered the strengths and weaknesses of a CER.  Finally, we developed one simple model for generating a CER -- the LSBF model.  We completed our discussion of CER’s by identifying several limitations, errors and caveats when using CERs.  Next, we’ll consider the use of CERs.

EXAMPLES OF CER USE

Basically, CER’s reflect changes in prices or costs (in constant dollars) as some physical, performance or other cost-driving  parameter(s) is changed.  The same parameter(s) for a new item or service can be input to the CER model and a new price or cost can be estimated.  Such relationships may be practically applied to a wide variety of items and services.

Construction
Many construction contractors use a rule of thumb which relates floor space to building cost.  Once a general structural design is determined, the contractor or buyer can use this relationship to estimate total building price or cost - excluding the cost of land.  For example, if we were building a brick two-story house with a basement, we may use $60/square foot (or whatever value is currently reasonable for the application) to estimate the price of the house.
	$60/sq ft x 2200 sq ft = $132,000 house price

Weapons Procurement
In the purchase of an airplane, CERs are often used to estimate the cost of the various parts of the aircraft.  One item may be the price for a wing of a certain type of airplane, a supersonic fighter for example.  History may enable the analyst to develop a CER relating wing surface area to cost.  You may find that there is an estimated $40,000 of wing cost (for instance NRE) not related to surface area and another $1000/square foot that is related to surface area to build one wing.  For a wing with 200 square feet of surface area we could estimate a price as:
estimated price	=	$40,000 + 200 sq ft x $1,000 per sq ft
			=	$40,000 + 200,000
			=	$240,000
Electronics
Manufacturers of certain electronic items have discovered that the cost of completed items varies directly with the number of total electronic parts in the item.  Thus, the sum of the number of resistors, capacitors, inductors, and transistors in a specific circuit design may serve as an independent variable (cost driver) in a predictive CER.  Assume a CER analysis indicates that $0.57 a unit is not related to the number of components with another $.11 added per part.  If evaluation of the drawing revealed that an item was designed to contain 11 capacitors, 12 resistors, 5 transistors, and 2 inductors, the total part count becomes 30.  Substituting the 30 parts into the CER:
	estimated cost = $0.57 + $.11 per part  *  number of parts
 			= $0.57 + $.11 (30)
			= $0.57 + $3.3
			 = $3.87

Cost And Price Analysis
CERs can be used for price analysis in a variety of ways, including aircraft engines, ships, trucks, and passenger autos.  Generally, under the Truth in Negotation Act, price analysis is required even when cost analysis is used. CERs provide an extremely useful tool for price analysis after the completion of cost analysis.
Like other techniques of price analysis, the CER approach requires the evaluator to determine whether the techniques used for comparison are fair and reasonable.  To do this, the evaluator must determine the basis for the estimate (CERs) and its reliability.  Some questions for this evaluation relating to how the estimate was made include:
What was the source of information?
What information and techniques were used?
How reliable were the earlier estimates?
The same parametric techniques used for developing estimates can be used in cost and price analysis.  Often the estimator uses known CER values as the basis for preparing an estimate.  Likewise, estimates can be based on CERs from “similar to” past history. 

Information And Techniques
Detailed analysis of a requirement requires an in-depth study of specifications and drawings, a physical inspection or “tear down” of the item or a similar item, or an analysis of similar work.  From such an analysis, the estimator can get a clear picture of the item or the service to be performed, and develop appropriate information and cost relationships.  Once the tasks have been delineated, the user can estimate costs using personal experience, published time standards, component purchase prices, CERs and other data.
In using this data for making an estimate, the estimator must consider the effects of such factors as dollar value changes and changes in technology.  Quantitative tools, such as use of index numbers, can be used to allow for changes in the value of the dollar.  Changes in technology are harder to contend with in cost analysis.  Changes in materials and changes in manufacturing procedures occur today at an ever increasing rate.  It is estimated that technology “turns over” today every two years.  Technology is an area requiring user expertise and knowledge for evaluating price effects of the application of new technology, to the current requirement.  The evaluation of the cost impact of technology surges is a difficult task to anticipate and quantify.

Estimate Reliability
In considering whether or not to use a specific estimate, we need to examine the “track record” of the cost estimator or the organization providing the estimate.  If, in the past, the estimates have been close to actuals, greater reliance may be placed on the estimate.  If estimates have been significantly above or below known actuals, then lower reliability should be placed on current estimates.  Knowing the reliability of past estimates does not free the cost or price analyst from the obligation to review the estimate and the estimating methodology as they relate to proposal accuracy.
Cost and price analysis should be temperred with product value.  Knowledge of the product, its functions and its use is essential for sound contract pricing.  Value analysis is a systematic and objective evaluation of the function of a product and its related costs.  Its purpose is to ensure optimum value.  Questions that help in the evaluation are:
What must the product do?
What does it cost now?  What does it cost to operate and maintain?
In what other ways can the function be performed?
What will these alternatives cost?
Two Examples Of CER Use
	One can utilize Consumer Price Index numbers to perform simple value or price analysis. Index numbers are, quite simply, CER’s, and predict, from history the effects of inflation.  For example, assume an item of equipment in 1980 cost $28,000 when an appropriate Consumer Price Index (CPI) was 140.  If the current index is now 190 and an offer to sell the equipment for $40,000 has been suggested, how much of the price increase is due to inflation?  How much of the price increase is due to other factors?
	Solution:	Px  =  Ix
			Py      Iy

			$28,000  =  1.40
			    Py           1.90

			1.4 Py  =  1.9 ($28,000)

			1.4 Py  =  $53,2000

			Py  =  $53,200  =  $38,000
				1.4

$38,000 now is roughly the equivalent of $28,000 in 1980.  Hence the price difference due to inflation is $38,000 - $28,000 = $10,000.  The difference due to other causes is  $2,000   ($40,000 - $38,000).
	The above example would illustrate the use of CPI numbers for a material cost analysis.  The steps were:
If we know what the price of an item was in the past, and we know the index numbers for both that time period and today, we can then predict what the price of that item should be now based on inflation alone.
If we have the same information as above, and we have a proposed price, we can compare that price to what it should be based on inflation alone.  If the proposed price is higher or lower than we expect with inflation, then we must investigate further to determine why a price or cost is higher or lower.

Consider the purchase of a house as another example that uses the LSBF technique.  Historical data for other homes purchased, may be examined during an analysis of proposed prices for a newly designed house.  Using this data, we can demonstrate a procedure for developing a CER.
Step 1: 	Designate and define the dependent variable.  In this case we will attempt to directly estimate the cost of a new house.
Step 2:	Select item characteristics to be tested for estimating the dependent variable.  A variety of home characteristics could be used to estimate cost.  These include such characteristics as: square feet of living area, exterior wall surface area, number of baths, and others.
Step 3:	Collect data concerning the relationship between the dependent and independent variable.  The example, Table III-3, shows data collected on five house plans so that we can determine a fair and reasonable price for a house of 2100 square feet and 2.5 baths.
Table III-3.

House Model�
Unit Cost�
Baths�Sq. Feet
Living Area�Sq. Feet Exterior Wall Surface��Burger�166,500�2.5�2,800�2,170��Metro�165,000�2.0�2,700�2,250��Suburban�168,000�3.0�2,860�2,190��Executive�160,000�2.0�2,440�1,990��Ambassador�157,000�2.0�1,600�1,400��New House�Unknown�2.5�2,600�2,100��
	Step 4.	Explore the relationship between the independent and dependent variables.  As stated earlier, analysis of the relationship between the item characteristics and the dependent variable may be performed using a  variety of techniques.
	Step 5.	Determine the relationship that best predicts the dependent variable.  Figure III-4 graphically depicts the relationship between the number of baths in the house and the price of the house.  From the graph, there appears to be a relationship between the number of baths and house price.  The relationship, however, may not be a good estimating tool, since three houses with a nearly $8,000 price difference (12 percent of the most expensive house) have the same number of baths.
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FIGURE III-4.  Number of Bathrooms

	Figure III-5 graphically relates square feet of living area to price.  In this graph, there appears to be a strong linear relationship between house price and living area.

�	$170	






�

Figure  III-5.  Cost vs Square Feet
	Figure III-6 graphically depicts the relationship between price and exterior wall surface area.  Again, there appears to be a linear relationship between house price and this independent variable.
���	$170	








Figure  III-6.  Cost vs Exterior Wall Surface (Sq. Ft.)

	Based on this graphic analysis, it appears that square feet of living area and exterior wall surface have the most potential for development of a cost estimating relationship.  We may now develop a “line-of-best-fit” graphic relationship by drawing a line through the average of the x values and the average of the y values and minimizing the vertical distance between the data points and the line (see Figure III-7 and Figure III-8). 
�
Figure  III-7.  Linear Trend of Cost to Living Area (Sq. Ft.)

	Viewing both these relationships, we might questions whether the Ambassador model data should be included in developing our CER.  In developing a CER, you need not use all available data if all data is not comparable.  However, you should not eliminate data just to get a better looking relationship.  In this case, we find that the Ambassador’s size is substantially different from the other houses for which we have data and the house for which we are estimating the price.  This substantial difference in size might logically affect the relative construction cost.  The trend relationship in Figure III-8 and Figure III-9, using the data for the four other houses, would be substantially different than relationships using the Ambassador data.  Based on this information, you might decided not to consider the Ambassador data in CER development.

��
Figure  III-8.  Linear Trend of Cost to Exterior Wall Surface (Sq. Ft.)


	If you eliminate the Ambassador data, you find that the fit of a straight line relationship of price to the exterior wall surface is improved.  For the relationship of price to square feet of living area, you find a close relationship, i.e., almost a straight line.  (See Figure III-9)
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FIGURE III-9.  Square Feet (Thousands)

	If you had to choose one relationship, you would probably select the one shown in Table III-3 (square feet of living area) over the relationship involving exterior wall surface because there is so little variance shown about the trend line.  If the analysis of these characteristics did not reveal a useful predictive relationship, you might consider combining two or more of the characteristics already discussed, or exploring new characteristics.  However, since the relationship between living area and price is so close, we may reasonably use it for our CER.
In documenting our findings, we can relate the process involved in selecting the living area for price estimation.  We can use the graph developed as an estimating tool.  The cost of the house could be calculated by using the same regression analysis formula discussed herein:

	For square feet of living area:		Y = $117,750 + $17.50 (2600)
						Y = $117,750 + $45,500
						Y = $163,250 estimated price

CERs, like most other tools of cost or price analysis, must be used with judgment. Judgment is required to evaluate the historical relationships in the light of new technology, new design, and other similar factors. Therefore, a knowledge of the factors involved in CER development is essential to proper application of the CER. Blind use of any tool can lead to disaster.

COMMON CERs

	Table III-4 lists some common CERs used to predict prices or costs of certain items. In addition to CERs used for estimating total cost and prices, others may be used to estimate and evaluate individual elements of cost. CERs, for example, are frequently used to estimate labor hours. Tooling costs may be related to production labor hours, or some other facet of production. Other direct costs may be directly related to the labor effort involved in a program.

Table III-4. CER Types
Product�Independent Variable��
Construction�
Floor space, roof surface area, wall surface area
��Gears�Net weight, percent of scrap, inches of teeth cut, harness, envelope
��Trucks�Empty weight, gross weight, horsepower, number of driving axles, loaded cruising speed
��Passenger car�Curb weight, wheel base, passenger space, horsepower��Turbine engine�Dry weight, maximum thrust, cruise thrust, specific fuel consumption, by-pass ratio, inlet temperature
��Reciprocating engine�Dry weight, piston displacement, compression ratio, horsepower
��Sheetmetal�Net weight, percent of scrap, number of holes drilled, number of rivets placed, inches of welding, volume of envelope
��Aircraft�Empty weight, speed, useful load, wing area, power, landing speed
��Diesel locomotive�Horsepower, weight, cruising speed, maximum load on standard grade at standard speed�����

ACCEPTANCE CRITERIA FOR A COST ESTIMATING RELATIONSHIP

	How good is a CER equation and how good is the CER likely to be for estimating the cost of new projects?  What is the confidence level of answers at +/- x% from the number estimated, i.e., how likely is the estimated cost to fall within a specified range of cost outcomes?
First, certain necessary conditions for a statistical analysis of a CER need to be stated:
There are more data points than coefficients to be estimated.
Error terms do not form a systematic pattern.
The independent variables are not highly correlated.
The form of the equation to be estimated is linear or has been translated into a linear form using logarithms.
The model makes sense from an economics and technical point of view.

	An R2 of equal or greater than 0.80 is desirable in curve fitting.  An R2  of 0.50 associated with the CER is as good as tossing a balanced coin.  The CER explained 1/2 of the observed cost outcomes.  In general, the higher the R2 the better the “explanatory” capability of the cost equation.  However, an R2  of 1.0 can indicate an “identity” of the cost variable and explanatory variable.  The data and explanatory variable being used should then be reexamined for redundancy.

	The “F” statistic measures the ratio of “explanation” of the explanatory variables (cost drivers) and the “residual” (error) term. The F statistic should have a value greater than 4.0 or 5.0 to indicate that a good cost driver has been selected for the cost model and that the form of the equation is acceptable. (A value of 1.0 indicates that the cost driver explains only 1/2 of the variation in the cost. This would not be a particularly good cost driver variable). The higher the F value the better  the prediction capability of the cost drivers. Also, the higher the “F” statistic, the higher will be the R2 value.
	“Partial” F statistics can be used to examine the contribution of a single cost driver term.  The higher the value, as in the “F” statistic, the better the additional contribution of the particular cost driver.  See a statistics text or Appendix D for a more detailed explanation of the “F” statistics.

	The “t” statistic can be used to test the validity of adding a particular cost driver variable.  First, a “null” hypothesis is made that the cost parameter adds no predictive value to the model (cost equation).  That is, the value of the parameter for the cost driver term being reviewed has a value of 0 (zero).  The “t” test is used to make a decision to accept or reject the “null” hypothesis for a given cost driver term.  Generally, a “t” value greater than five leads to the conclusion to reject the null hypothesis.  A “t” value less than five leads to the acceptance of the null hypothesis, that the cost term does not add predictive value to the CER.  Each case to accept or reject the null hypothesis depends upon the difference between the hypothesized and estimated coefficients, the confidence interval desired, and the degrees of freedom of the data (number of data observations minus the numbers of parameters being estimated).
The “t” statistic is also used for other applications.  For example, in order to determine if two groups of data are from the same population or from two different populations.
When then degrees of freedom in a data set approach 30, the statistics of the “t” distribution approach the normal distribution.  If it is not known whether a normal distribution is justified, the “law of large numbers” can be invoked that states that for a large enough sample (large enough cost database), the error term involved in estimating cost will approach a normal distribution.  That is, the normal distribution can be used instead of the “t” distribution to test the null hypothesis.  The “t” is of similar shape to the normal distribution, except that there is a larger probability of lower cost or higher cost (extreme outcomes) associated with the “t” distribution rather than the normal distribution.
Also, an analysis of the plot residual values can be useful.  If a pattern exists, then correlation may be explained by other factors.  If the plot of residuals is a scatter plot with no patterns, then the CER equation may be good if other factors are favorable.
Another important statistical measure is the bandwidth or confidence interval associated with the application of the CER cost estimates.  The bandwidth of the cost estimate depends upon the confidence interval required or desired, the parameter value, and the degrees of freedom of the data.
See Appendix D for a more detailed explanation of the “t” distribution and confidence intervals.

AUDITING AND ANALYZING A CER

CER Analysis
Cost estimating relationships (CERs) relate cost to some other program element in a definite way.  Examples of CERs are per diem rates, “shop supplies”, sales tax estimates, etc.  CERs supposedly relate one cost to another or with a well defined parameter.  When rolled into an interlocking algorithm, analysts have to probe both the estimate and the underlying data used to develop a CER.  What distinguishes a CER from a conventional estimating approach is that CERs define a general relationship based on a set of data rather than a specific relationship based on a direct precedent.  A CER may be less precise than a convential estimating method but the cost savings resulting from the CER approach may be worth the potential loss of precision.
Within detailed cost estimates, CER’s may be used for estimating small or derivative cost elements.  CER’s are also commonly used for budgetary estimates, “rough order of magnitude” estimates, and simple cost-benefit calculations when the preliminary or uncertain nature of the project discourages a costly estimating effort.  However, well built cost models in the hands of a professional can be better cost predictors than detail methods because certain judgement and other biases are more controlled.

General Features
	A CER can be a functional relationship between one variable and another and may represent a statistical relationship between some well defined program element and some specific cost.  Since most company overhead rates are percentages of direct labor expense, these are CERs.  Computer and travel costs often show statistical relationships to engineering costs, design is frequently closely correlated to drafting costs and these, in turn, to the number of drawings, parts, size, weight, etc.  Many costs can be related to other costs or non-cost variables in some fashion but not all such relationships can be turned into a CER.
A CER must have two characteristics.  First, it should link in some rational way the underlying variable - the independent variable, and the cost being developed.  Second, the CER should have a strong statistical fit,  R2,  and confidence interval, with the basis element.

Evaluating an Estimate
CERs are used in lieu of a direct substantive link between a cost element and some basis of estimate (BOE).  Since CERs are developed from collections of cases and represent average values, CERs have uncertainty built into them.  (A direct BOE to cost estimate extrapolation is preferred if the cost element is significant, if a good BOE can be found, and if some well defined extrapolation can be postulated between the BOE and the cost element.)  The first step in an analysis of a CER influenced estimate is to identify how much of the total estimate is CER driven.
The second step in analyzing a proposal using CERs is to evaluate the CERs themselves.  Since CERs supposedly relate an element of cost to some variable or factor, the analyst must determine whether the relationship is truly functional and statistical.  If the CER is a factor implied by a functional relationship, the analyst needs an explanation of the function and support for the assertion of a relationship.  Both deterministic and statistical support are required.  In other words, does the relationship make logical sense and is the pattern of influence regular enough to be helpful?  Base data must be available for examination, preferably original, “unsmoothed” data.  Again, the purpose of a CER is to save time and effort.  If the amount of the proposal affected by CERs is not great, the evaluation effort applied to the CER should be an appropriate amount.
In a “worse case” situation, the analyst may have to back track to the original data set used to develop a CER. In that case the analyst should attempt to see if all the relevant cases have been included and no “cherry picking” has occurred. In other words, what “risk” is involved by using the CER?
Assuming the original data set is available and complete, the developer of the CER must explain the theory of the relationship and the data processing performed.  If “outliers” were excluded, the estimator needs to explain why.  If the explanation of the exclusion is unsatisfactory, the analyst may want to develop a set of CER’s with the outliers included.  Ordinarily, outliers affect the deviation of the estimate rather than the value of the CER, but it is useful to check. If several data points have been excluded and if these influence the CER mean and standard deviation significantly, the CER may not be operationally useful even if theoreticaly valid. To illustrate, suppose a relationship is identified between variable K and cost variable C. Suppose the CER is 7 x K = C. If the value 7 is developed from an arithmetic average of a dozen values but three “outliers” have been excluded, then inclusion of the outliers may spread out the sample standard deviation to the point that confidence in the relationship may become suspect. The CER estimator should be able to supply the original data set and his/her analysis. The cost analyst may need to replicate the estimate to verify the calculation. If this is done, the CER statistics should be examined for:
The sample size. Confidence in the estimate will increase as the sample size increases.
The standard error of the mean (or the point estimate) should be shown along with the standard deviation of the calculated mean.
The standard deviation of the sample set. What is the range of the majority of the data points? Confidence in the estimate increases as more and more data points fall within a specified range.
If the CER is developed from a correlation calculation, the cost analyst can examine the coefficient of correlation. Correlation infers a link between the two factors but the relationship may be accidental. Standard statistical tests exist for checking the likelihood that a given correlation coefficient is accidental and should be used if the sample set is small, or if “R” is less than .8  (R2 = .64).
The last step in evaluation of a CER is calculating the effect which reasonable variations on the CER value can have on the estimate. If reasonable variations on the CER impact the estimate greatly, the analyst has to be skeptical of the explanatory power of the CER. The effect of this is to widen the actual range of an estimate.

Summary Of CER Audit And Analysis
CER analysis requires addressing the questions:
What is the proportion of the estimate directly affected by CERs?
How much precision is appropriate to the estimate in total and to the part affected by the CERs?
Is there a rational relationship between the individual CER affected variables and the underlying variables?
Is the pattern of relationship functional or purely statistical?
If functional, what is the functional relationship? And why?
If statistical, is the history of the relationship extensive enough to give a confidence that it operates in the given case?
Is the pattern of relationship statistically significant? And at what level of confidence?
What is the impact on the estimate of using reasonable variations of the CERs?

If the CERs represent a cost-effective response to an estimating problem and if they are rationally developed and solidly based, the CERs are valid and accurate tools for an estimate. Assuming no “show stopper” problems are uncovered, the analyst can accept the concept of the CERs and apply such margins of variance as seem reasonable.
This chapter has presented the concept of Cost Estimating Relationships (CERs) and the statistical underpinnings of CER development and application. The basic mathematical relationships were described and examples showing the use of CERs were also presented. A flow chart of the CER development process is shown in Figure III-10.
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FIGURE III-10.  Typical CER Development Process
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DEFINITION:  Cost Estimating Relationships (CER’s) are mathematical expressions relating cost as the dependent variable to one or more independent cost driving variables.
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